Name:	
Class:	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2017

MATHEMATICS EXTENSION 1

General Instructions:

- · Reading Time: 5 minutes.
- · Working Time: 2 hours.
- · Write in black or blue pen.
- · Board approved calculators & templates may be used
- · A Standard Integral Sheet is provided.
- In Question 11 14, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 70

Section I: 10 marks

- · Attempt Question 1 10.
- · Answer on the Multiple Choice answer sheet provided.
- · Allow about 15 minutes for this section.

Section II: 60 Marks

- · Attempt Question 11 14
- Answer on blank paper unless otherwise instructed. Start a new page for each new question.
- ' Allow about 1 hours & 45 minutes for this section.

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Multiple Choice Questions

Choose the best answer for each of the following questions:

- Differentiate tan² 5x.
 - A $2 \tan 5x$
 - B 10 tan5x
 - C $10 \tan 5x \sec 5x$
 - D $10 \tan 5x \sec^2 5x$
- 2. Evaluate $\lim_{x \to 0} \frac{\sin \frac{x}{5}}{3x}$.
 - $A = \frac{3}{5}$
 - $B = \frac{5}{3}$
 - C 15
 - D none of the above
- 3. Let each different arrangement of all the letters of the word "DELETED" be considered a word. How many words are possible altogether?
 - A 420
 - B 630
 - C 840
 - D None of the above

JRAHS EXT 1 Trial 2017

4. Suppose the rate of change of a quantity N is proportional to the excess of N over a fixed quantity P. i.e. $\frac{dN}{dt} = -k(N-P)$, where k is a constant.

If t is the time and the value of A is (N-P) when t=0, then which of the following is true?

- A $N = P Ae^{-kt}$
- B $N = P Ae^{kt}$
- $C N = P + Ae^{-kt}$
- D $N = P + Ae^{kt}$
- 5. A particle is travelling in Simple Harmonic Motion. If x is the displacement at time t, v is the velocity and \ddot{x} is the acceleration. Which of the following cannot be true?
 - A $x = -3\cos 4t$
 - B $\ddot{x} = 4 4x^2$
 - C $\ddot{x} = 4 4x$
 - D $v^2 = 4(1-x^2)$
- Which expression is equal to $\int \sin^2 2x dx$?
 - $A = \frac{-\cos^3 2x}{6} + C$
 - B $\frac{\sin^3 2x}{6} + C$
 - $C \quad \frac{1}{2}(x \frac{1}{4}\sin 4x) + C$
 - D $\frac{1}{2}(x+\frac{1}{4}\sin 4x)+C$
- 7. Find the equation of the chord of contact of the tangents to the parabola $x^2 = 8y$ from the point (3,-2).
 - A 3x + 4y + 8 = 0
 - B 3x 4y + 8 = 0
 - C 3x 4y 8 = 0
 - D 3x + 4y 8 = 0
- JRAHS EXT 1 Trial 2017

- 8. Which of the following may not be true in a circle?
 - i Equal arcs subtend equal chords.
 - ii Angles at the circumference subtended by equal chords are equal.
 - iii Angle at the centre is twice the angle at the circumference.
 - iv If a line subtends equal angles then the 4 end points are concylic.
 - A ii only
 - B i, ii, iv only
 - C ii, iii, iv only
 - D All of i, ii, iii, iv
- 9. The point A is (-2,1) and the point B is (b,-3). The point P(13,-9) divides the interval AB externally in the ratio of 5:3. Find the value of b.
 - A 4
 - B -4

 - D $-\frac{6}{7}$
- 10 The quadratic equation $ax^2 + bx + c = 0$ has roots $x = \tan \alpha$ and $x = \tan \beta$. Which of the following is/are true?

$$i \tan(\alpha + \beta) = \frac{b}{c - a}$$

ii
$$\tan^2(\alpha - \beta) = \frac{b^2 - 2a}{(a+c)}$$

i
$$\tan(\alpha+\beta) = \frac{b}{c-a}$$
 ii $\tan^2(\alpha-\beta) = \frac{b^2-2ac}{(a+c)^2}$ iii $\tan^2(\alpha-\beta) = \frac{b^2-4ac}{(a+c)^2}$

- A i only
- B ii only
- C i & ii only
- D i & iii only

Question 11

Marks

2

3

2

2

- a) Find $\int \frac{5}{4+8x^2} dx$.
- Find $\int \frac{x^3}{\sqrt{x^2 + 1}} dx$ (use substitution $u = \sqrt{x^2 + 1}$).
- c) (i) A particle is travelling in a straight line. Its displacement from the origin is x m/s at time t seconds.

If $x = \sqrt{3}\cos 2t - \sin 2t$, express x in the form of $R\cos(2t + \alpha)$, where R > 0 and $0 \le \alpha \le 2\pi$.

- (ii) Find the maximum speed of the particle and the time when it first occurs.
- d) Find the area of then region bounded by the curve $y = \frac{x}{\sqrt{x^2 1}}$, the x-axis and the lines $x = \sqrt{10}$, $x = \sqrt{5}$.
- e) (i) Given the equation $x 2\sin x = 0$.

Show that there is at least one root between x = 1.5 and x = 2.

(ii) Use Newton's method to find a second approximation to the positive root of $x - 2\sin x = 0$. Take x = 1.7 as the first approximation.

Question 12 (15 marks) (START A NEW PAGE)

- a) Consider $f(x) = e^x e^{-x}$.
- (i) Justify that the inverse of f(x) exists.
- (ii) Find the equation of $f^{-1}(x)$.

1

2

- Find the coefficient of x^4 in the expansion of $(2-5x)^7$.
- c) (i) A fair coin is tossed 2n times. Write down the probability (P_k) of observing k heads and (2n-k) tails.
- (ii) Find the probability of the most likely outcome and simplify it. Give reason(s).
- d) (i) Find the derivative of $y = \sin^{-1}[2x(1-x)]$.
- (ii) Hence find the maximum value of $y = \sin^{-1}[2x(1-x)]$.
- (iii) Sketch the graph of $y = \sin^{-1}[2x(1-x)]$.

Question 13 (15 marks) (START A NEW PAGE)

a)

At a certain instant, a plane flies overhead at a constant altitude of 5000 metres and at a constant speed of 100 metres per second.

When the plane has travelled x metres from the overhead position, its angle of elevation from the observer is θ radians.

(i) Show that
$$\frac{dx}{d\theta} = -\frac{5000}{\sin^2 \theta}$$
.

(ii) Hence show that
$$\frac{d\theta}{dt} = -\frac{1}{50}\sin^2\theta$$
.

(iii) Find the rate at which the angle of elevation is changing 50 seconds after the plane is overhead.

Question 13 continues on the next page

JRAHS Ext 1 Trial 2017

Question 13 (continued)

JRAHS Ext 1 Trial 2017

b) There are four couples: Katie and Ming, David and Betty, Margaret and Danny, May and Kent. They go to a cinema and decide to sit in the last row.

How many different arrangements are possible if Katie and Ming want to sit together but May and Kent do not want to sit together?

2

1

- c) (i) The acceleration (\ddot{x}) of a particle at a displacement from the origin (x) is given by $\ddot{x} = \frac{1}{x}$.

 Initially the particle is at rest at a point 25m from the origin, find its velocity (v) in terms of x.
- (ii) Briefly describe its motion.
- d) (i) Prove $(x+y) \ge 2\sqrt{xy}$, x > 0, y > 0.
- (ii) Hence or otherwise, find the largest possible value for $\log_a \left(\frac{\alpha}{\beta}\right) + \log_{\beta} \left(\frac{\beta}{\alpha}\right)$, $\alpha, \beta > 1$ 3

Question 14 (15 marks) (START A NEW PAGE)

a) Prove by Mathematical induction that $3^n > n^3$ for $n \ge 4$.

4

b) The diagram below shows a plane P which is flying at a constant speed of $\sqrt{8gh}$ m/s upwards at an angle of elevation 30°.

At the instant when the plane is at a height h metres vertically above a missile silo, which is located at a point O on the ground, a cruise missile from the silo is launched at an angle of elevation α to hit the plane where $0^{\circ} \le \alpha \le 90^{\circ}$.

The launching speed of the missile is u m/s, t is the time in seconds after launch and g is the acceleration due to gravity in m/s².

With the axes shown in the diagram above, you may assume the following equations: (DO NOT PROVE)

Position of the missile is given by $x = ut \cos \alpha$, $y = ut \sin \alpha - \frac{1}{2}gt^2$

The trajectory of the missile is given by $y = x \tan \alpha - \frac{gx^2}{2u^2} (1 + \tan^2 \alpha)$

(i) Show that the trajectory of the plane is given by $y = \frac{x}{\sqrt{3}} + h$.

2

1

(ii) Show that $u\cos\alpha = \sqrt{6gh}$.

h .

(iii) Assuming the missile can hit the plane, hence, from part (i), show that the x-coordinates of the plane of collision must satisfy $\frac{x^2}{12} + (\frac{1}{\sqrt{3}} - \tan \alpha)hx + h^2 = 0$.

Question 14 continues on the next page

JRAHS Ext 1 Trial 2017

Question 14 (continued)

- (iv) Suppose that $\alpha > \frac{2}{\sqrt{3}}$.
 - (α) Show that there are two possible points of collision, at B and C, between the plane and the missile.
 - (β) Show that the time T (in seconds) elapsed between the two points of collision is given by: 3

$$T = \sqrt{\frac{8h\tan\alpha}{g}\left(3\tan\alpha - 2\sqrt{3}\right)}.$$

END OF PAPER

Student ID number:		

Section I

Multiple Choice

10 Marks

Attempt Question 1 – 10 (1 mark each) Allow approximately 15 minutes for this section.

Use the multiple choice answer sheet below to record your answers to Question 1-10.

Select the alternative: A, B, C or D that best answers the question.

Colour in the response oval completely.

Sample:

2+4=? (A) 2 (B) 6 (C) 8 (D) 9 A B C D

If you think you have made a mistake, draw a cross through the incorrect answer and colour in the new answer

ie A 👝 B 🗃 C 🔾 D 🤇

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word "correct" and draw an arrow as follows:

Trial HSC Examination 2017

Multiple Choice Answer Sheet

2 Unit / Ext 1 / Ext 2

Completely colour in the response oval representing the most correct answer.

1	Α	\circ	В	0	C	\circ	D	(P)
2	Α	\circ	В	0	C	\circ	D	0
3	Α		В	0	C	\circ	D	\circ
4	Α	\circ	В	0	C	0	D	\circ
5	Α	\circ	В		C	\circ	D	\circ
6	Α	\circ	\mathbf{B}	0	C		D	\circ
7	Α	\circ	\mathbf{B}	•	C	\circ	D	\circ
8	A	\circ	В	0	C	0	D	\circ
9	A		В	0	C	\circ	D	0
10	Α	0	В	\circ	C	\circ	D	•

Marks: /0/10

rage 1-		
TRAHS TRIALS MATHEMATICS Extension 1: Question Suggested Solutions	n. 1/ Marks	2017 Marker's Comments
a) $\int \frac{5}{4+8x^2} dx = \frac{5}{8} \int \frac{1}{\frac{1}{2}+x^2} dx$		
$=\frac{5}{8}\cdot\frac{1}{\sqrt{12}}\tan^{-1}\frac{x}{\sqrt{12}}+C$	1	
= 5/2 tan-1(122) + C	ŀ	
b) Let $T = \int \frac{x^3}{\sqrt{x^2 + 1}} dx$		
$u = \sqrt{x^2 + 1}$ $u^2 = x^2 + 1 \text{and} x^2 = u^2 - 1$ $2u du = 2x dx$ $x dx = u du$	1	changing variables into u
$I = \int \frac{(u^2 - 1) u du}{u}$	1	Converting integrand into u
$= \int (n^2 - 1) dn$ $= \frac{1}{3} n^3 - n^2 + C$		mio u
$= \frac{1}{3} (21^{2} + 1)^{3/2} - (x^{2} + 1)^{\frac{1}{2}} + C$	1	For undoing Substitution

T:\Teacher\Maths\marking templates\Suggested Mk solns template V2 no Ls.doc

-1 uge 2 -	
TRAHS TRIALS MATHEMATICS Extension 1: Question	2017 Marker's Comments
c) (i) $2c = \sqrt{3} cop 2t - \frac{Me cond T}{Sin 2t}$	TRAINET'S COMMENTS
$= 2 \left[\frac{13}{2} 402t - \frac{1}{2} \sin 2t \right]$	
$=2\left[c_{0}\frac{\pi}{6}c_{0}2t-Sin\frac{\pi}{6}Sin2t\right]$	
$= 2 \cos(2t + \overline{z}) \equiv R \cos(2t + x)$	
\therefore R=2 and $\propto = \frac{11}{6}$	
Method II:	
$\sqrt{3} \cos 2t - \sin 2t = R \cos (2t + \alpha)$	
= $Rcop2tcopx - Rsin2tsinx$ Equating coefficient Rcopx = I3 and $Rsinx = 1$	
$=) R^2(co^2x + Sin^2x) = 3 + 1$	
$\therefore R = 2 (R>0) \text{ and } Sin^2 \alpha + 400^2 \alpha = 1$	Martion
-". Lor $\alpha = \frac{1}{2}$ and $\sin \alpha = \frac{1}{2}$	Why 711/6
$\Rightarrow \alpha$ in 1st quadrant and $\alpha = 776$ only	excluded when
:. $2c = \sqrt{3} \cos 2t - \sin 2t = 2 \cos (2t + \frac{\pi}{6})$	tand = 1

T:\Teacher\Maths\marking templates\Suggested Mk solns template_V2_no Ls.doc

JRAHS TRIALS MATHEMATICS Extension 1 : Question Suggested Solutions	marks	2017 Marker's Comments
c) (11) From $x = 2 \cos(2t + \frac{\pi}{6})$ $\dot{x} = -4 \sin(2t + \frac{\pi}{6})$		
maximum speed = il = 4 m/s Maxima/minima occur when	1	For maximum Speed
$-4 = -4 \sin(2t + \frac{\pi}{6})$		
or $Sin\left(2t + \frac{\pi}{6}\right) = 1$ $\Rightarrow 2t + \frac{\pi}{6} = \frac{\pi}{2}$		
$2t = \frac{3\pi}{6} - \frac{\pi}{6}$ $\therefore t = \frac{\pi}{6}$		
in maximum speed first occurs when $t = 776$	1	For 1st time max occurs
$\begin{array}{c} \chi \\ \frac{2}{3} \\ -2 \\ \end{array}$		

1 noje s

f	ugi	T -	

- luge T-		
JRAHS TRIALS MATHEMATICS Extension 1: Question		2017
Suggested Solutions	Marks	Marker's Comments
c) (11) Method II:		
又=2cm(2t+量)		
x = - 4 Sin (2t + #)		
$\ddot{x} = -8 \cos(2t + \frac{\pi}{6})$		
maximum speed occurs when $\dot{x} = 0$		
$1.e Cor(2t + \frac{\pi}{6}) = 0$		
⇒ 2t+== = 1 or 31 etc		
$2t = \frac{2\pi}{6}$ or		
::t = #	1	
: maximum speed = x(=)		
$= 4 \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right)$		
= 451n #		
= 4 m/s	1	
Method π : $\ddot{\varkappa} = -4\left(2\cos\left(2t+\frac{\pi}{6}\right)\right)$		
$= -4\pi = -2^{2}\pi$		
inten is SHM		
	1+1 > +	= 7% and x =4
TO OTHE THE TELESTIC TO THE TE		16 12 12 14

TRAHS TRIALS MATHEMATICS Extension 1: Question		2017
Suggested Solutions	Marks	Marker's Comments
d) $y = \frac{x}{\sqrt{x^2-1}}$ is undefined for $-1< x < 1$		
For $x>1$, the function is decreasing Between 15 and $y=x(x^2-1)^{-\frac{1}{2}}$		$y = \frac{1}{\sqrt{1-\frac{1}{x^2}}}$
Between $rac{1}{5}$ and $y = x(x^2-1)^{\frac{1}{2}}$		$ a, x \rightarrow \infty, y \rightarrow 1 $
=> Area = S		y=1 3 H.A.
: Area, A = Jydx		
$= \int_{-\infty}^{\infty} (x^2 - i)^{-\frac{1}{2}} dx$	٠	Go cott :b
1 1	ı	for setting up integral
$= \frac{1}{2} \int_{-\infty}^{\sqrt{10}} (x^2 - 1)^{-\frac{1}{2}} dx$		$\int f'(x) [f(x)]^n dx$
15		$= \underbrace{\left[f(x)\right]_{h+1}^{h+1}}$
$=\frac{1}{2}\left(\frac{(\lambda-1)}{1}\right)$		
$= \frac{1}{2} \left(\frac{\chi^2 - 1}{2} \right)^{\frac{1}{2}} \left \frac{100}{15} \right $ $= \sqrt{\chi^2 - 1} \left \frac{100}{15} \right $	ı	For integrating
$= \sqrt{9} - \sqrt{4}$		
= 1 "		
:. Area is I unit?	1	for correct Area

- lages -

TRAHS TRIALS MATHEMATICS Extension 1: Question...! 2017 Suggested Solutions Marker's Comments e) (1) Jet f(n) = >c-251n>c f(1.5) = 1.5-25m 1.5 = -0.495 (3dp) <0 $f(z) = 2 - 2 \sin 2 = 0.181 (3dp) > 0$ Since for is continuous between 1.5 and 2 AND f(n) changes sign, a root exists between 1.5 and 2 f(x) = > - 2 sinx f'(x) = 1-200x If x, = 1.7, then by Newton's Method x2 is given by $\chi_2 = \chi_1 - \frac{f(x)}{f(x)}$ $= 1.7 - \frac{(1.7 - 2.8 \ln 1.7)}{(1 - 2 \cos 1.7)}$ = 1.9257

T:\Teacher\Maths\marking templates\Suggested Mk solns template V2 no Ls.doc

Mathematics Et 1 Question 12		
Suggested Solutions	Marks	Marker's Comments
a) if $(x) = e^x - e^{-x}$		
$f'(x) = e^x + e^{-x}$		
>0 (since ex >0 and ex >0 for		
XEIR)		
: f(x) is monotonically increasing	+ 1	
(passes horizontal line test)		
:.f-'(x) exists.		
il let y=fuc)		
:. y= ex- e-x		
for $f^{-1}(x)$:		
$x = e^{y} - e^{-y}$ (swap x and y)	-0	
$= e^{y} - \frac{1}{e^{y}}$		
$xe^3 = e^{2y} - 1$		
e ² y - xe ^y -1=0	+ (1)	
$e^{3} = \frac{x + \sqrt{x^{2} + 4}}{2}$		
Since $e^y > 0$, then $e^y = \frac{x + \sqrt{x^2 + 4}}{2}$ only		
$\therefore y = \ln \left[\frac{x + \sqrt{x^2 + 4}}{2} \right]$	- ①	

Mathematics Question		
Suggested Solutions	Marks	Marker's Comments
b) $(2-5x)^7$ General term for expansion $\binom{1}{k}(2)^{7-k}(-5x)^k$ Coefficient of $x^4 \rightarrow k=4$ $(\text{coefficient is } \binom{1}{k}(2)^3(-5)^4$	- ①	
= 175000	—(I)	
() i $2n \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{2n-k}$ $11\left(\frac{1}{2}\right)^k = 2n \left(\frac{1}{2}\right)^{2n}$		
Since (1) is constant for all k. then maximum probability happens when 2/2	6	Must state that fact
15 maximum.	-0	
Max value when $k = \frac{1}{2}(2n) = n$		
(By Pascal's triangle) $Max P_{k} = \frac{2n}{n} \left(\frac{1}{2}\right)^{2n}$	-(1)	
<u>Or</u>		

Mathematics Question		
Suggested Solutions	Marks	Marker's Comments
ii) Since the coin is fair, the most likely		
outcome is half the number of tosses.		
i.e. n heads and n tails	-(1)	
$\therefore \text{Max } P_{R} = \frac{2n}{n} \left(\frac{1}{2} \right)^{n} \left(\frac{1}{2} \right)^{n}$		
$= 2n \left(\frac{1}{2} \right)^{2n}$	- (1)	
ii) $P_k = {}^{2n}C_k \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{2n-k}$		
$= \frac{2}{3}$ $\left(\frac{1}{2}\right)^{3}$		
Max Probability $\Rightarrow \frac{P_{h+1}}{P_h} = \frac{2n\binom{1}{h+1}\binom{1}{2}}{2n\binom{1}{h}\binom{1}{2}^{2n}} > 1$		
$\frac{1}{2}$ $\frac{2}{h}$ $\frac{2}{h}$		
$\frac{(2n)!}{(k-1)!(2n-k-1)!} > \frac{(2n)!}{k!(2n-k)!}$		Note:
$\frac{\text{(Both are)}}{\text{positive}} \frac{(k+1)!(2n-k-1)!}{(2n)!} \leq \frac{k!(2n-k)!}{(2n)!}$		If you used
.k+1 < 2n-k	-(1)	$\frac{P_k}{P_{k-1}} \gg 1$, you must end up
$2k \le 2n - 1$ $k \le n - \frac{1}{2}$		you must end up with k < n+ 2
k= n-1 (k & Z)		h=n.
: Max Probability = $P_n = {}^{2n}L_n \left(\frac{1}{2}\right)^{2n}$	-(1)	

Mathematics Question		
Suggested Solutions	Marks	Marker's Comments
d) i y= Sin' [2x (1-x)] = Sin'(2x-2x2)		
$\frac{dy}{dx} = \frac{1}{\sqrt{1-(2x-2x^2)^2}} \times (2-4x)$		
= 2-4x	-(1)	Must be under one fraction!
VI IZO 3		
$\frac{11}{11} \frac{dy}{dx} = 0 \longrightarrow \frac{2-4x}{\sqrt{1-4x^2(1-x)^2}} = 0$		
$2-4x=0$ $x=\frac{1}{2}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- ①	
: maximum at $x = \frac{1}{2}$ as $Sin^{-1}[2x(1-x)]$ is continuous		
When $x = \frac{1}{2}$, $y = Sin'(1 - \frac{1}{2})$ = $Sin'(\frac{1}{2})$		
= 77 6	- (1)	
Note: x 0 14 13 0.4 0.49 \(\frac{1}{2} \) 0.51 0.6 \(\frac{1}{3} \) \(\frac{3}{4} \) 1 \[\frac{dy}{dx} \) 2 1.08 0.46 0.05 0.74 0 -0.74 0.05 -0.46 -1.08 -2		
symmetrical values?		

Suggested Solutions	Marks	Marker's Comments
iii) Domain:		
$-1 \leq 2x - 2x^{\prime} \leq 1$		
$\frac{-1}{2} \leq x - x^2 \leq \frac{1}{2}$		
$\frac{-1}{2} \leq x^1 - x \leq \frac{1}{2}$		
$\frac{1}{2} \leq x_1 - x + \frac{1}{4} \leq \frac{1}{3}$		
$-\frac{1}{4} \le (x - \frac{1}{2})^2 \le \frac{3}{4}$		
Since (x-\frac{1}{2})2 > -14 for all x,		
check (x-12)2 4 3/4		
$x - \frac{1}{2} \le \frac{\pm \sqrt{3}}{2}$		
X < 1+18		
$\frac{1-\sqrt{3}}{2} \le x \le \frac{1+\sqrt{3}}{2}$		
When $x = \frac{1 \pm 13}{2}$, $y = -\frac{77}{2}$ (By calculator)		
x-intercepts y=0 -> Sin'[2x(1-x)] =0		
2x(1-x)=0		
-X=0 or		

Suggested Solutions (ii) Continued ($\frac{1}{2}, \frac{\pi}{6}$) Doma	
Shape + interce Correct + Max to point Note : If you did not find the domain of curve you receive /3 maximum,	uts tsco

	MATHEMATICS Extension 1 : Question	on.13.	1/3
	Suggested Solutions	Marks	Marker's Comments
5000 (1) (1)	alterate majes as line	5050 6	topol.
e made-efficiencia il e made-efficiencia il log. "Al dili recommenti pro egi giorgi, probago	7 = 100		
nghip again sa lati managangan ya na lati managangan	x = 5000 cd 0	→	needed a line
- prife surrice pay 4 2 3. refer surfidens.	= -5000 5:30		to get the of
	$\frac{dx}{dt} = \frac{100}{100} \frac{d\theta}{dt} = \frac{d\theta}{dx} \frac{dx}{dt}$		
e po	$\frac{-S_{10}^{2} \Theta}{5000} \times 1000$ $= -S_{10}^{2} \Theta$ $= -S_{10}^{2} \Theta$	(I)	
(1)	=50 x=100t +an0 = 5000 x=5000 +an0=1	}	
No objection of the contraction of the contrac	30 - 51Å (TA) - 1/2 30 - 50 - 50		
	A = Too Cad See		<u> </u>
(b)	5. ways it excensing kate Ming D.B.	עקר	
n an a Deplet Aprile Albertania	KM (D (B) (D) (D) 10 places for Many 5 places for Kent.	ļ	
OFF.	Total = 5/x2 x 6x5 = 7200		U
1	- oll accompany with Mogikate May 1km 7/22, - 612,21 = 10 080 - 2880	logeth	

J: Malhs\marking templates\Suggested Mk solns template_V4_half Ls.doc

MATHEMATICS Extension 1: Quest		cont. 2/3
Suggested Solutions (c)(i) \ \ \frac{1}{2} \ \ \ \frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Marks	Marker's Comments
V 5x - x	1	
$\int v dv = \int \frac{dx}{dx}$		
1 V = lox + C		
when t=0, v=0, x= 75	!	
0=1025+4		!
$-1 + \frac{1}{2}x^2 = 10x - 10^25$		
2 VE = 10 25		i I
V== 2/n==	1	
V= ± J210(25)		
now infially I = 25 so particle moves to the right of vertectly is only 200		needed on explaination to get the second mark.
v = 1210 7/25 01/2	U	
(ii) Intially the particle is at rest at 25m to the right of the argin the acceleration is postive so it moves to the right with increasing speed at a decreasing changes direction never stops and never changes direction		MORDS
(d) (i) consider $(x-y)$ 70 2070, y70 x^2+y^2-2xy y^2-2xy y^2+y^2+2xy y^2+y^2+2xy	0	
(2+y) = 7 +2y = 25xy		,

marking templates Suggested Mk solns template, V4, half Ls.doc

MATHEMATICS Extension 1: Question 13 cont. Suggested Solutions Marker's Comments 0/ (52-54) 70 (220, 4>0 x+4 2 2504 (1) log_x(=) + log_x(=) = log_x 2 - log_2 3 + log_p p - log_x = 1- logz & + 1 - logx = 2-log_B-log_d now logged + logges > 2 Jlagaslogged > 2 /196 19px 7/251 50 - log x - log x 8 6-2 $\log_{\chi}\left(\frac{\kappa}{\beta}\right) + \log_{\beta}\left(\frac{\beta}{\chi}\right) \leq 2-2$ $\log_{\chi}(\frac{1}{p}) + \log_{\beta}(\frac{p}{\chi}) \leq 0$ o max value is zero * If you let re-log() and y = log () > maximum it one mark * Some students ground it was a minimum but wrote a max value of O without an explanation => 2 marks only is

M ahs marking templates/Suggested Mk soles template_V4_half Ls.doc

Suggested Solutions a) $3^n > n^3$, $n \ge 4$		Marker's Comments
For n= 4.	- 0	1
34= 81	-	
4 ³ = 64	- 1	
. 3" > 4 ³	-	
: true for n=4	- 1	
Assume true for n= k.	_	
ie 3k z k³ for k>4		
Prove true for n=k+1		
ie. 3k+1 > (k+1)3		
LHS = 3k+1		
= 3 × 3 ^k		
= 3k + 3k + 3k		
$> k^3 + k^3 + k^3$ (by assumption	1 6	
> k3 + 4k2 + 4k2 (k>4)		
$= k^3 + 3k^2 + 3k^2 + 2k^2$		
> k3 + 3k2 + 3k + 2/since		
(K24,	7	2 for working
$> k^3 + 3k^2 + 3k + 1$		out and
$=(R+1)^3$		conclusion.
: 3R+1 > (R+1)3		
the statement is true by the		
principle of mathematical induction	-	
OR 3k-k3>0	_	
RTP: 3k+1 - (k-1)3>0	-	
LHS = 3k × 3 - k3-3k2-3k-1	_	
$= 3(3^{k}-k^{3})+2k^{3}-3k^{2}-3k-$		
from assumption: 3k-123>0	- 4-3	marks up to this
:. 3(3k-k3)>0	- = -	step.
-'. RTP: 2k3-3k2-3k-1>0 for k>4	-	

MATHEMATICS Extension 1 : Questic Suggested Solutions	Marks	Marker's Comments
	17Adi KS	Marker's Comments
let $f(k) = 2k^3 - 3k^2 - 3k - 1$		
$f'(k) = 6k^2 - 6k - 3$		
when f'(x) = 0		
k= 6±136+4(6)(3)		
5(9)		
= 6± 1108		
12		
= 1113		
a.		
for k = 1+13		
P(N-3 8 9		
4 > 1+13		
: f'(k) 70 for k7,4		
f(4) = 2(4)3-3(4)2-3(k)-1	'	
= 67 >0		
since f(4) >0 and f'(k)>0		
for R>4,		
2k3-3k2-3k-1>0 for k24		
:. 3k+1-(k-1)3>0		
statement is true by the process		
of mathematical induction		
	1	
b) i) y=mx+b		
where b=h	7	
and m= tan 30	1 }	
= 17)	
· (1 = × 1)		
3 7 3		
ii) 690 cos 30 = 4,895	1	
130 1 : 1 = £ 18gh cos 30		
x		·

MATHEMATICS Extension 1 : Questi Suggested Solutions	Marks	Marker's Comments
the missile will hit the plane at time & when: X missile = X plane Ut cosx = 18gh cos 30 ucosx = 18gh x \frac{13}{2} ucosx = 8x3gh	}	Market 3 Comments
: $u\cos x = J6gh$ iii) $y = \frac{x}{\sqrt{3}} + h$ from (i) $y = x + \tan x - \frac{9x^2}{2u^2} (1 + \tan^2 x)$ (given) when they collide:)	
$\frac{x}{\sqrt{3}} + h = x + \tan x - \frac{9x^2}{2u^2} (1 + \tan^2 x)$ $\frac{x}{\sqrt{3}} + h - x + \tan x + \frac{9x^2}{2u^2} (\sec^2 x) = 0$ $\frac{x}{\sqrt{3}} + h - x + \tan x + \frac{9x^2}{2u^2 \cos^2 x} = 0$	١	
$\frac{9x^2}{2(6gh)} + x\left(\frac{1}{13} + \tan \alpha\right) + h = 0$ $\frac{2(6gh)}{2(6gh)} + x\left(\frac{1}{13} + \tan \alpha\right) + h = 0$ $\frac{2(6gh)}{2(6gh)} + x\left(\frac{1}{13} + \tan \alpha\right) + h = 0$	1	
12h $\frac{\chi^2}{12} + \chi h \left(\frac{1}{\sqrt{3}} + \tan \alpha\right) + h^2 = 0$ $\frac{12}{12}$ $\frac{12}{\sqrt{3}}$ $\frac{12}{\sqrt{3}} + \frac{12}{\sqrt{3}} + \frac{12}{\sqrt{3}}$ $\frac{12h}{\sqrt{3}} + \frac{12h}{\sqrt{3}} + \frac{12h}{\sqrt{3}}$ $\frac{12h}{\sqrt{3}} + \frac{12h}{\sqrt{3}} + \frac{12h}{\sqrt{3}} + \frac{12h}{\sqrt{3}}$ $\frac{12h}{\sqrt{3}} + \frac{12h}{\sqrt{3}} + \frac{12h}{\sqrt{3}} + \frac{12h}{\sqrt{3}}$	1=	workeing out.
$= h^{2} \left(\frac{1}{3} - \frac{2}{13} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right) - \frac{h^{2}}{3}$ $= h^{2} \left(+ \frac{1}{3} + $		
= h^2 tand $\left(\frac{1}{15}\right)$		

MATHEMATICS Extension 1 : Question	n. 14.	4
Suggested Solutions	Marks	Marker's Comments
$\frac{\text{since } \tan d > \frac{2}{3}}{\tan d - \frac{2}{3} > 0 \text{ and } h^{2} > 0}$	7	must have clear explanation
h^2 tand $(tand - \frac{2}{15}) > 0$ $\Delta > 0$]	of why 070 cannot just substitute tand=2
real roots at B and C.		and : . A>0
B) from equation in (iii) $x = -h(\frac{1}{12} - \tan x) \pm \int h^2 \tan x (\tan x - \frac{1}{12})$ $2 \times \frac{1}{12}$ $x = -6h(\frac{1}{12} - \tan x) \pm 6 \int h^2 \tan x (\tan x - \frac{1}{12})$		
$x_1-x_2 = -6h(\frac{1}{12}-tand)+6 \int_0^2 tand(tand-\frac{1}{12})$ $-(-6h(\frac{1}{12}-tand)-6 \int_0^2 tand(tand-\frac{2}{12})$ $= 12 \int_0^2 tand(tand-\frac{2}{12})$ time = distance	ı	
speed $T = 12 \int h^2 \tan d \left(\tan d - \frac{2}{12} \right)$ ucos d	1	
= $\sqrt{\frac{144 h^2 tand}{144 h^2 tand}}$ (tand - $\sqrt{\frac{1}{3}}$) $\sqrt{\frac{169 h}{144 h^2 tand}}$ = $\sqrt{\frac{24 h}{3} tand}$ (3tand - $\sqrt{\frac{213}{3}}$) = $\sqrt{\frac{24 h}{3} tand}$ (3tand - $\sqrt{\frac{213}{3}}$)		
T = 8htand (3tand - 213)	13	, working out.